Student Perspectives: Intro to Recommendation Systems

A post by Hannah Sansford, PhD student on the Compass programme.

Introduction

Like many others, I interact with recommendation systems on a daily basis; from which toaster to buy on Amazon, to which hotel to book on booking.com, to which song to add to a playlist on Spotify. They are everywhere. But what is really going on behind the scenes?

Recommendation systems broadly fit into two main categories:

1) Content-based filtering. This approach uses the similarity between items to recommend items similar to what the user already likes. For instance, if Ed watches two hair tutorial videos, the system can recommend more hair tutorials to Ed.

2) Collaborative filtering. This approach uses the the similarity between users’ past behaviour to provide recommendations. So, if Ed has watched similar videos to Ben in the past, and Ben likes a cute cat video, then the system can recommend the cute cat video to Ed (even if Ed hasn’t seen any cute cat videos).

Both systems aim to map each item and each user to an embedding vector in a common low-dimensional embedding space E = \mathbb{R}^d. That is, the dimension of the embeddings (d) is much smaller than the number of items or users. The hope is that the position of these embeddings captures some of the latent (hidden) structure of the items/users, and so similar items end up ‘close together’ in the embedding space. What is meant by being ‘close’ may be specified by some similarity measure.

Collaborative filtering

In this blog post we will focus on the collaborative filtering system. We can break it down further depending on the type of data we have:

1) Explicit feedback data: aims to model relationships using explicit data such as user-item (numerical) ratings.

2) Implicit feedback data: analyses relationships using implicit signals such as clicks, page views, purchases, or music streaming play counts. This approach makes the assumption that: if a user listens to a song, for example, they must like it.

The majority of the data on the web comes from implicit feedback data, hence there is a strong demand for recommendation systems that take this form of data as input. Furthermore, this form of data can be collected at a much larger scale and without the need for users to provide any extra input. The rest of this blog post will assume we are working with implicit feedback data.

Problem Setup

Suppose we have a group of n users U = (u_1, \ldots, u_n) and a group of m items I = (i_1, \ldots, i_m). Then we let \mathbf{R} \in \mathbb{R}^{n \times m} be the ratings matrix where position R_{ui} represents whether user u interacts with item i. Note that, in most cases the matrix \mathbf{R} is very sparse, since most users only interact with a small subset of the full item set I. For any items i that user u does not interact with, we set R_{ui} equal to zero. To be clear, a value of zero does not imply the user does not like the item, but that they have not interacted with it. The final goal of the recommendation system is to find the best recommendations for each user of items they have not yet interacted with.

Matrix Factorisation (MF)

A simple model for finding user emdeddings, \mathbf{X} \in \mathbb{R}^{n \times d}, and item embeddings, \mathbf{Y} \in \mathbb{R}^{m \times d}, is Matrix Factorisation. The idea is to find low-rank embeddings such that the product \mathbf{XY}^\top is a good approximation to the ratings matrix \mathbf{R} by minimising some loss function on the known ratings.

A natural loss function to use would be the squared loss, i.e.

L(\mathbf{X}, \mathbf{Y}) = \sum_{u, i} \left(R_{ui} - \langle X_u, Y_i \rangle \right)^2.

This corresponds to minimising the Frobenius distance between \mathbf{R} and its approximation \mathbf{XY}^\top, and can be solved easily using the singular value decomposition \mathbf{R} = \mathbf{U S V}^\top.

Once we have our embeddings \mathbf{X} and \mathbf{Y}, we can look at the row of \mathbf{XY}^\top corresponding to user u and recommend the items corresponding to the highest values (that they haven’t already interacted with).

Logistic MF

Minimising the loss function in the previous section is equivalent to modelling the probability that user u interacts with item i as the inner product \langle X_u, Y_i \rangle, i.e.

R_{ui} \sim \text{Bernoulli}(\langle X_u, Y_i \rangle),

and maximising the likelihood over \mathbf{X} and \mathbf{Y}.

In a research paper from Spotify [3], this relationship is instead modelled according to a logistic function parameterised by the sum of the inner product above and user and item bias terms, \beta_u and \beta_i,

R_{ui} \sim \text{Bernoulli} \left( \frac{\exp(\langle X_u, Y_i \rangle + \beta_u + \beta_i)}{1 + \exp(\langle X_u, Y_i \rangle + \beta_u + \beta_i)} \right).

Relation to my research

A recent influential paper [1] proved an impossibility result for modelling certain properties of networks using a low-dimensional inner product model. In my 2023 AISTATS publication [2] we show that using a kernel, such as the logistic one in the previous section, to model probabilities we can capture these properties with embeddings lying on a low-dimensional manifold embedded in infinite-dimensional space. This has various implications, and could explain part of the success of Spotify’s logistic kernel in producing good recommendations.

References

[1] Seshadhri, C., Sharma, A., Stolman, A., and Goel, A. (2020). The impossibility of low-rank representations for triangle-rich complex networks. Proceedings of the National Academy of Sciences, 117(11):5631–5637.

[2] Sansford, H., Modell, A., Whiteley, N., and Rubin-Delanchy, P. (2023). Implications of sparsity and high triangle density for graph representation learning. Proceedings of The 26th International Conference on Artificial Intelligence and Statistics, PMLR 206:5449-5473.

[3] Johnson, C. C. (2014). Logistic matrix factorization for implicit feedback data. Advances in Neural Information Processing Systems, 27(78):1–9.

 

Compass students attending the Workshop on Functional Inference and Machine Intelligence (FIMI) at ISM Tokyo

A post by Compass CDT students Edward Milsom, Jake Spiteri, Jack Simons, and Sam Stockman.

We (Edward Milsom, Jake Spiteri, Jack Simons, Sam Stockman) attended the 2023 Workshop on Functional Inference and Machine Intelligence (FIMI) taking place on the 14, 15 and 16th of March at the Institute of Statistical Mathematics in Tokyo, Japan. Our attendance to the workshop was to further collaborative ties between the two institutions. The in-person participants included many distinguished academics from around Japan as well as our very own Dr Song Liu. Due to the workshops modest size, there was an intimate atmosphere which nurtured many productive research discussions. Whilst staying in Tokyo, we inevitably sampled some Japanese culture, from Izakayas to cherry blossoms and sumo wrestling!

We thought we’d share some of our thoughts and experiences. We’ll first go through some of our most memorable talks, and then talk about some of our activities outside the workshop.

Talks

Sho Sonoda – Ridgelet Transforms for Neural Networks on Manifolds and Hilbert Spaces

We particularly enjoyed the talk given by Sho Sonoda, a Research Scientist from the Deep Learning Theory group at Riken AIP on “Ridgelet Transforms for Neural Networks on Manifolds and Hilbert Spaces.” Sonoda’s research aims to demystify the black box nature of neural networks, shedding light on how they work and their universal approximation capabilities. His talk provided valuable insights into the integral representations of neural networks, and how they can be represented using ridgelet transforms. Sonoda presented a reconstruction formula from which we see that if a neural network can be represented using ridgelet transforms, then it is a universal approximator. He went on to demonstrate that various types of networks, such as those on finite fields, group convolutional neural networks (GCNNs), and networks on manifolds and Hilbert spaces, can be represented in this manner and are thus universal approximators. Sonoda’s work improves upon existing universality theorems by providing a more unified and direct approach, as opposed to the previous case-by-case methods that relied on manual adjustments of network parameters or indirect conversions of (G)CNNs into other universal approximators, such as invariant polynomials and fully-connected networks. Sonoda’s work is an important step toward a more transparent and comprehensive understanding of neural networks.

Greg Yang – The unreasonable effectiveness of mathematics in large scale deep learning

Greg Yang is a researcher at Microsoft Research who is working on a framework for understanding neural networks called “tensor programs”. Similar to Neural Tangent Kernels and Neural Network Gaussian Processes, the tensor program framework allows us to consider neural networks in the infinite-width limit, where it becomes possible to make statements about the properties of very wide networks. However, tensor programs aim to unify existing work on infinite-width neural networks by allowing one to take the infinite limit of a much wider range of neural network architectures using one single framework.

In his talk, Yang discussed his most recent work in this area, concerning the “maximal update parametrisation”. In short, they show that in this parametrisation, the optimal hyperparameters of very wide neural networks are the same as those for much smaller neural networks. This means that hyperparameter search can be done using small, cheap models, and then applied to very large models like GPT-3, where hyperparameter search would be too expensive. The result is summarised in this figure from their paper “Tensor Programs V: Tuning Large Neural Networks via Zero-Shot Hyperparameter Transfer”, which shows how this is not possible in the standard parametrisation. This work was only possible by building upon the tensor program framework, thereby demonstrating the value of having a solid theoretical understanding of neural networks.

Statistical Seismology Seminar Series

In addition to the workshop, Sam attended the 88th Statistical Seismology seminar in the Risk Analysis Research Centre at ISM https://www.ism.ac.jp/~ogata/Ssg/ssg_statsei_seminarsE.html. The Statistical Seismology Research Group at ISM was created by Emeritus Professor Yosihiko Ogata and is one of the leading global research institutes for statistical seismology. Its most significant output has been the Epidemic-Type Aftershock Sequence (ETAS) model, a point process based earthquake forecasting model that has been the most dominant model for forecasting since its creation by Ogata in 1988.

As part of the Seminar series, Sam gave a talk on his most recent work (Forecasting the 2016-2017 Central Apennines Earthquake Sequence with a Neural Point Process’, https://arxiv.org/abs/2301.09948) to the research group and other visiting academics.

Japan’s interest is earthquake science is due to the fact that they record the most earthquakes in the world. The whole country is in a very active seismic area, and they have the densest seismic network. So even though they might not actually have the most earthquakes in the world (which is most likely Indonesia) they certainly document the most. The evening before flying back to the UK, Sam and Jack felt a magnitude 5.2 earthquake 300km north of Tokyo in the Miyagi prefecture. At that distance all that was felt was a small shudder…

Japan

It’s safe to say that the abundance of delicious food was the most memorable aspect of our trip. In fact, we never had a bad meal! Our taste buds were taken on a culinary journey as we tried a variety of Japanese dishes. From hearty, broth-based bowls of ramen and tsukemen, to fun conveyor-belt sushi restaurants, and satisfying tonkatsu (breaded deep-fried pork cutlet) with sticky rice or spicy udon noodles, we were never at a loss for delicious options. We even had the opportunity to cook our own food at an indoor barbecue!

Aside from the food, we thoroughly enjoyed our time in Tokyo – exploring the array of second-hand clothes shops, relaxing in bath-houses, and trying random things from the abundance of vending machines.

 

Compass students at AISTATS 2023

Congratulations to Compass students Josh Givens, Hannah Sansford and Alex Modell who, along with their supervisors have had their papers accepted to be published at AISTATS 2023.

 

‘Implications of sparsity and high triangle density for graph representation learning’

Hannah Sansford, Alexander Modell, Nick Whiteley, Patrick Rubin-Delanchy

Hannah: In this paper we explore the implications of two common characteristics of real-world networks, sparsity and triangle-density, for graph representation learning. An example of where these properties arise in the real-world is in social networks, where, although the number of connections each individual has compared to the size of the network is small (sparsity), often a friend of a friend is also a friend (triangle-density). Our result counters a recent influential paper that shows the impossibility of simultaneously recovering these properties with finite-dimensional representations of the nodes, when the probability of connection is modelled by the inner-product. We, by contrast, show that it is possible to recover these properties using an infinite-dimensional inner-product model, where representations lie on a low-dimensional manifold. One of the implications of this work is that we can ‘zoom-in’ to local neighbourhoods of the network, where a lower-dimensional representation is possible.

The paper has been selected for oral presentation at the conference in Valencia (<2% of submissions). 

 

Density Ratio Estimation and Neyman Pearson Classification with Missing Data

Josh Givens, Song Liu, Henry W J Reeve

Josh: In our paper we adapt the popular density ratio estimation procedure KLIEP to make it robust to missing not at random (MNAR) data and demonstrate its efficacy in Neyman-Pearson (NP) classification. Density ratio estimation (DRE) aims to characterise the difference between two classes of data by estimating the ratio between their probability densities. The density ratio is a fundamental quantity in statistics appearing in many settings such as classification, GANs, and covariate shift making its estimation a valuable goal. To our knowledge there is no prior research into DRE with MNAR data, a missing data paradigm where the likelihood of an observation being missing depends on its underlying value. We propose the estimator M-KLIEP and provide finite sample bounds on its accuracy which we show to be minimax optimal for MNAR data. To demonstrate the utility of this estimator we apply it the the field of NP classification. In NP classification we aim to create a classifier which strictly controls the probability of incorrectly classifying points from one class. This is useful in any setting where misclassification for one class is much worse than the other such as fault detection on a production line where you would want to strictly control the probability of classifying a faulty item as non-faulty. In addition to showing the efficacy of our new estimator in this setting we also provide an adaptation to NP classification which allows it to still control this misclassification probability even when fit using MNAR data.

Student Perspectives: An Introduction to Stochastic Gradient Methods

A post by Ettore Fincato, PhD student on the Compass programme.

This post provides an introduction to Gradient Methods in Stochastic Optimisation. This class of algorithms is the foundation of my current research work with Prof. Christophe Andrieu and Dr. Mathieu Gerber, and finds applications in a great variety of topics, such as regression estimation, support vector machines, convolutional neural networks.

We can see below a simulation by Emilien Dupont (https://emiliendupont.github.io/) which represents two trajectories of an optimisation process of a time-varying function. This well describes the main idea behind the algorithms we will be looking at, that is, using the (stochastic) gradient of a (random) function to iteratively reach the optimum.

Stochastic Optimisation

Stochastic optimisation was introduced by [1], and its aim is to find a scheme for solving equations of the form \nabla_w g(w)=0 given “noisy” measurements of g [2].

In the simplest deterministic framework, one can fully determine the analytical form of g(w), knows that it is differentiable and admits an unique minimum – hence the problem

w_*=\underset{w}{\text{argmin}}\quad g(w)

is well defined and solved by \nabla_w g(w)=0.

On the other hand, one may not be able to fully determine g(w) because his experiment is corrupted by a random noise. In such cases, it is common to identify this noise with a random variable, say V, consider an unbiased estimator \eta(w,V) s.t. \mathbb{E}_V[\eta(w,V)]=g(w) and to rewrite the problem as

w_*=\underset{w}{\text{argmin}}\quad\mathbb{E}_V[\eta(w,V)].

(more…)

Compass CDT is recruiting for its final few fully funded places to start September 2023

We are happy to announce our upcoming applications deadline of 16 March 2023 for Compass CDT programme. For international applications there are limited scholarship funded places available for this final recruitment round. Early applications advised.

Compass is offering specific projects for PhD students to study from Sept 2023. The projects are listed in the research section of our website. All the supervisors listed are open to discussion on the projects provided and can also talk to applicants about other project ideas. Please provide a ranked list of 3 projects of interest: 1 = project of highest interest. Project supervisors will be happy to respond to specific questions you have after reading the proposals. Applicants should contact them by email if they wish beforehand.

Also, we are pleased to announce a new project Genetic Similarity Based Cohort Building that has been added to the list for September 2023 start funded by Roche, one of the world’s largest biotech companies, as well as a leading provider of in-vitro diagnostics and a global supplier of transformative innovative solutions across major disease areas.

PhD Project Allocation Process

Application forms will be reviewed based on the 3 ranked projects specified or other proposed topic. Successful applicants will be invited to attend an interview with the Compass admissions tutors and the specific project supervisor. If you are made an offer of PhD study it will be published through the online application system. You will then have 2 weeks to consider the offer before deciding whether to accept or decline.

We welcome applications from all members of our community and are particularly encouraging those from diverse groups, such as members of the LGBT+ and black, Asian and minority ethnic communities, to join us.

APPLICATIONS DEADLINE

16 March 2023, 23:59 (London UK time zone)

APPLY NOW

Advantages of being a Compass Student

  • Stipend – a generous stipend of £21,668 pa tax free, paid in monthly payments. Plus your own expense budget of £1,000 pa towards travel and research activity.
  • No fees – all tuition fees are covered by the EPSRC and University of Bristol.
  • Bespoke training – first year units are designed specifically for the academic needs of each Compass student, which enables students to develop knowledge and capability to pursue cross-disciplinary PhD research.
  • Supervisors – supervisors from across academic disciplines offer a range of research projects.
  • Cohort – Compass students benefit from dedicated offices and collaboration spaces, enabling strong cohort links and opportunities for shared learning and research.

About Compass CDT

A 4-year bespoke PhD training programme in the statistical and computational techniques of data science, with partners from across the University of Bristol, industry and government agencies.

The cross-disciplinary programme offers exciting collaborations across medicine, computer science, geography, economics, life and earth sciences, as well as with our external partners who range from government organisations such as the Office for National Statistics, NCSC and the AWE, to industrial partners such as LV, Improbable, IBM Research, EDF, and AstraZeneca.

Students are co-located with the Institute for Statistical Science in the School of Mathematics, which occupies the Fry Building.

Hear from our students about their experience with the programme

  • Compass has allowed me to advance my statistical knowledge and apply it to a range of exciting applied projects, as well as develop skills that I’m confident will be highly useful for a future career in data science. – Shannon, Cohort 2

  • With the Compass CDT I feel part of a friendly, interactive environment that is preparing me for whatever I move on to next, whether it be in Academia or Industry. – Sam, Cohort 2

  • An incredible opportunity to learn the ever-expanding field of data science, statistics and machine learning amongst amazing people. – Danny, Cohort 1

Compass CDT Video

Find out more about what it means to be a part of the Compass programme from our students in this short video.

APPLICATIONS DEADLINE

16 March 2023, 23:59 (London UK time zone)

APPLY NOW

Student Perspectives: An Introduction to Graph Neural Networks (GNNs)

A post by Emerald Dilworth, PhD student on the Compass programme.

This blog post serves as an accessible introduction to Graph Neural Networks (GNNs). An overview of what graph structured data looks like, distributed vector representations, and a quick description of Neural Networks (NNs) are given before GNNs are introduced.

An Introductory Overview of GNNs:

You can think of a GNN as a Neural Network that runs over graph structured data, where we know features about the nodes – e.g. in a social network, where people are nodes, and edges are them sharing a friendship, we know things about the nodes (people), for instance their age, gender, location. Where a NN would just take in the features about the nodes as input, a GNN takes in this in addition to some known graph structure the data has. Some examples of GNN uses include:

  • Predictions of a binary task – e.g. will this molecule (which the structure of can be represented by with a graph) inhibit this given bacteria? The GNN can then be used to predict for a molecule not trained on. Finding a new antibiotic is one of the most famous papers using GNNs [1].
  • Social networks and recommendation systems, where GNNs are used to predict new links [2].

What is a Graph?

A graph, G = (V,E), is a data structure that consists of a set of nodes, V, and a set of edges, E. Graphs are used to represent connections (edges) between objects (nodes), where the edges can be directed or undirected depending on whether the relationships between the nodes have direction. An n node graph can be represented by an n \times n matrix, referred to as an adjacency matrix.

Idea of Distributed Vector Representations

In machine learning architectures, the data input often needs to be converted to a tensor for the model, e.g. via 1-hot encoding. This provides an input (or local) representation of the data, which if we think about 1-hot encoding creates a large, sparse representation of 0s and 1s. The input representation is a discrete representation of objects, but lacks information on how things are correlated, how related they are, what they have in common. Often, machine learning models learn a distributed representation, where it learns how related objects are; nodes that are similar will have similar distributed representations. (more…)

Compass at NeurIPS 2022

A post by Anthony Stephenson, Jack Simons, and Dan Ward, PhD students on the Compass programme.

Introduction

Ant Stephenson, Jack Simons, and I (Dan Ward) had the pleasure of attending the 2022 Conference on Neural Information Processing Systems (NeurIPS), one of the largest machine learning conferences in the world. The conference was held in New Orleans, which gave us an opportunity to explore a lively city full of culture with delicious local cuisine. We thought we’d collaborate on a blog post together covering some of the highlights.

Memorable Talks

The conference had broad range of talks including technical presentations of research, applied projects, and discussions of the philosophical and ethical questions that arise in AI. To give a taste of some of the talks, we picked out some of our favourites below.

Noam Brown: Human Modelling and Strategic Reasoning in the Game of Diplomacy.

The Game of Diplomacy is a strategic board game invented in 1954. It’s unique feature, and of crucial importance of the game, is that players interact via natural language to form allegiances. Whilst AI has been successful in beating humans in many purely adversarial games (e.g. Chess, Go), this collaborative element poses unique challenges. Firstly, it isn’t obvious how to evaluate/devise strategies for collaboration/betrayal, especially in the self-play-based reinforcement learning paradigm. Secondly, as communication happens via natural language, the AI must be able to translate their strategic plan into text. This strange combination of problems lead to interesting and innovative solutions. Paper link here.

Geoffrey Hinton: The Forward-Forward Algorithm for Training Deep Neural Networks.

Among the great line-up of speakers was Professor Geoffrey Hinton, known for popularising backpropogation for deep neural networks. Inspired by producing a more biologically plausible algorithm for learning, he has proposed the ‘Forward-Forward’ algorithm which he claims can also explain the phenomena of sleep! Professor Geoffrey Hinton then went on to express his belief that using biologically-inspired hardware, so-called neuromorphic computing, may play a key role in advancing AI. The talk was certainly unconventional, but nevertheless entertaining. Paper link here.

David Chalmers: Could a Large Language Model be Conscious?

Amongst all the machine-learning experts was David Chalmers, a philosopher! There are important questions regarding the possibility that language models might be conscious. David Chalmers aimed to educate the machine-learning audience in attendance of how we can better think about these problems and re-phrase the questions that we’re asking. We concluded that these questions are, unsurprisingly, best left to philosophers!

Poster Sessions


Jack and Dan:

I (Dan), presented a poster of my work at the conference, on Robust Neural Posterior Estimation (paper link here). I was definitely surprised by the scale of the poster sessions, and the broad scope of all the work taking place. Below is some of the posters that me and Jack found interesting:

Contrastive Neural Ratio Estimation
Benjamin K. Miller · Christoph Weniger · Patrick Forré
Authors propose NRE-C which aims to generalise NRE-A (Hermans et al. (2019)) and NRE-B (Durkan et al. (2020)) into one method. NRE-C can recover both methods by taking their two introduced hyperparameters at certain limits. Paper link here.

Towards Reliable Simulation-Based Inference with Balanced Neural Ratio Estimation
Arnaud Delaunoy · Joeri Hermans · François Rozet · Antoine Wehenkel · Gilles Louppe
These authors also make a contribution to the field of neural ratio estimation in the simulation-based inference context. Authors propose the notion of a “balanced” classifier, which is a classifier in which the average output from the classifier over the positive data class plus the average output over the negative data class equals to 1. The authors argue that if one has a classifier is balanced then it will lead to more conservative posterior estimates, which is something which practitioners seek. To integrate this into an algorithm they suggest adding a penalisation term onto the standard logistic-loss which punishes classifiers as they become less balanced. Paper link here.

Training and Inference on Any-Order Autoregressive Models the Right Way
Andy Shih · Dorsa Sadigh · Stefano Ermon
A joint distribution can be decomposed into its univariate conditionals by the chain rule, although by doing so we implicitly choose an ordering in a model, which prevents arbitrary conditional inference. Any-order autoregressive models circumvent this generally by being trained such that all possible univariate conditionals are considered, but this leads to learning redundant information. The paper proposes a new method to train autoregressive models, using a subset of univariate conditionals that still supports arbitrary conditional inference. This research was also presented as a talk, but sadly we missed it!  Paper link here.

Anthony:

The poster sessions formed the bulk of the conference timetable, with 2 2-hour sessions per day, on Tuesday, Wednesday and Thursday. These were very busy, with many posters on a wide-range of topics and a large congregation of attendees. As a result, it was sometimes difficult to track down the subset of posters on material of particular interest and when this feat was achieved, on occasion it was still hard work to actually have a detailed conversation with the author(s). Nonetheless, it was interesting to see the how varied the subjects of the poster were and in addition get a feeling for “themes” of the conference: recurring, clearly in-vogue topics. Amongst the sea of posters, I did manage to find a number relating to GPs; of these, those I found most interesting were:

Posterior and Computational Uncertainty in Gaussian Processes:
Jonathan Wenger · Geoff Pleiss · Marvin Pförtner · Philipp Hennig · John Cunningham
Here the authors propose a way to naturally incorporate uncertainty introduced from the use of (iterative) GP approximation methods. Paper link here.

Sparse Gaussian Process Hyperparameters: Optimize or Integrate?
Vidhi Lalchand · Wessel Bruinsma · David Burt · Carl Edward Rasmussen
The authors attempt to integrate a fully-Bayesian inference procedure for sparse GPs, as an alternative to the commonly adopted approach of optimising the kernel hyperparameters by maximum likelihood estimation. Paper link here.

Log-Linear-Time Gaussian Processes Using Binary Tree Kernels:
Michael K. Cohen · Samuel Daulton · Michael A Osborne
The idea here feels a bit unorthodox; they use a “binary-tree” kernel which discretises the space, with quantization error determined by the number of leaves. This would seem to lose interpretability on the properties of the function prior (e.g. smoothness), but does appear to give empirical benefits in their experiments. Paper link here.

Workshops

In addition to the main conference, on the Friday and Saturday at the end of the week there were a selection of workshops on a variety of sub-fields within machine learning. If you are fortunate enough for there to be a workshop dedicated to your research area, then they provide a space to gather people with research directly relevant to your own and facilitate helpful discussions and networking opportunities.

Anthony:

For me, the “Gaussian processes, spatiotemporal modeling and decision-making systems” workshop was the most useful part of the conference. It gave me the chance to speak to people working on interesting problems related to my own; discover the kind of directions they are heading in and lines of work they are contemplating. Additionally, I presented a poster during this workshop which allowed me to discuss my work with an audience well-versed on the topic and its possible significance.

The Big Easy

In addition to the actual conference, attending NeurIPS also gave us the opportunity to explore the city of New Orleans; aka The Big Easy. Upon arrival, we were immediately greeted in the airport by the sound of Louis Armstrong, a strong theme in the city, which features a park named after him. New ‘Awlins’ is well known for its jazz, but awareness of this fact does not necessarily prepare you for the sheer quantity, especially in the streets of the French Quarter, that awaits you. The real epicentre of jazz in the city is situated on Frenchmen street, on which a swathe of bars hosting nearly-nightly live music reside. We spent several evenings there, including one of particular note, where French president Emmanuel Macron suddenly appeared, trailed by an extensive retinue of blue-suited aides and bodyguards. Another street in New Orleans infamous for its nightlife is Bourbon street. Where Frenchmen street is focused on jazz, Bourbon street contains all manner of rowdy madness, assaulting your senses with noise, smells and sights as soon as you arrive. Both are necessary experiences when visiting The Big Easy.

Conclusion

All in all, the conference was a great opportunity to get a taste of the massive array of research that occurs in machine learning. We were all surprised by the scope of the research topics and talks, and enjoyed the opportunity to explore a new culture and city.

Student Perspectives: An Introduction to Deep Kernel Machines

A post by Edward Milsom, PhD student on the Compass programme.

This blog post provides a simple introduction to Deep Kernel Machines[1] (DKMs), a novel supervised learning method that combines the advantages of both deep learning and kernel methods. This work provides the foundation of my current research on convolutional DKMs, which is supervised by Dr Laurence Aitchison.

Why aren’t kernels cool anymore?

Kernel methods were once top-dog in machine learning due to their ability to implicitly map data to complicated feature spaces, where the problem usually becomes simpler, without ever explicitly computing the transformation. However, in the past decade deep learning has become the new king for complicated tasks like computer vision and natural language processing.

Neural networks are flexible when learning representations

The reason is twofold: First, neural networks have millions of tunable parameters that allow them to learn their feature mappings automatically from the data, which is crucial for domains like images which are too complex for us to specify good, useful features by hand. Second, their layer-wise structure means these mappings can be built up to increasingly more abstract representations, while each layer itself is relatively simple[2]. For example, trying to learn a single function that takes in pixels from pictures of animals and outputs their species is difficult; it is easier to map pixels to corners and edges, then shapes, then body parts, and so on.

Kernel methods are rigid when learning representations

It is therefore notable that classical kernel methods lack these characteristics: most kernels have a very small number of tunable hyperparameters, meaning their mappings cannot flexibly adapt to the task at hand, leaving us stuck with a feature space that, while complex, might be ill-suited to our problem. (more…)

Student Perspectives: Spectral Clustering for Rapid Identification of Farm Strategies

A post by Dan Milner, PhD student on the Compass programme.

Image 1: Smallholder Farm – Yebelo, southern Ethiopia

Introduction

This blog describes an approach being developed to deliver rapid classification of farmer strategies. The data comes from a survey conducted with two groups of smallholder farmers (see image 2), one group living in the Taita Hills area of southern Kenya and the other in Yebelo, southern Ethiopia. This work would not have been possible without the support of my supervisors James Hammond, from the International Livestock Research Institute (ILRI) (and developer of the Rural Household Multi Indicator Survey, RHoMIS, used in this research), as well as Andrew Dowsey, Levi Wolf and Kate Robson Brown from the University of Bristol.

Image 2: Measuring a Cows Heart Girth as Part of the Farm Surveys

Aims of the project

The goal of my PhD is to contribute a landscape approach to analysing agricultural systems. On-farm practices are an important part of an agricultural system and are one of the trilogy of components that make-up what Rizzo et al (2022) call ‘agricultural landscape dynamics’ – the other two components being Natural Resources and Landscape Patterns. To understand how a farm interacts with and responds to Natural Resources and Landscape Patterns it seems sensible to try and understand not just each farms inputs and outputs but its overall strategy and component practices. (more…)

Skip to toolbar