Introduction
My work focuses on addressing the growing need for reliable, day-ahead energy demand forecasts in smart grids. In particular, we have been developing structured ensemble models for probabilistic forecasting that are able to incorporate information from a number of sources. I have undertaken this EDF-sponsored project with the help of my supervisors Matteo Fasiolo (UoB) and Yannig Goude (EDF) and in collaboration Christian Capezza (University of Naples Federico II).
Motivation
One of the largest challenges society faces is climate change. Decarbonisation will lead to both a considerable increase in demand for electricity and a change in the way it is produced. Reliable demand forecasts will play a key role in enabling this transition. Historically, electricity has been produced by large, centralised power plants. This allows production to be relatively easily tailored to demand with little need for large-scale storage infrastructure. However, renewable methods are typically decentralised, less flexible and supply is subject to weather conditions or other unpredictable factors. A consequence of this is that electricity production will less able to react to sudden changes in demand, instead it will need to be generated in advance and stored. To limit the need for large-scale and expensive electricity storage and transportation infrastructure, smart grid management systems can instead be employed. This will involve, for example, smaller, more localised energy storage options. This increases the reliance on accurate demand forecasts to inform storage management decisions, not only at the aggregate level, but possibly down at the individual household level. The recent impact of the Covid-19 pandemic also highlighted problems in current forecasting methods which struggled to cope with the sudden change in demand patterns. These issues call attention to the need to develop a framework for more flexible energy forecasting models that are accurate at the household level. At this level, demand is characterised by a low signal-to-noise ratio, with frequent abrupt changepoints in demand dynamics. This can be seen in Figure 1 below.