Student Perspectives: Application of Density Ratio Estimation to Likelihood-Free problems

A post by Jack Simons, PhD student on the Compass programme.

Introduction

I began my PhD with my supervisors, Dr Song Liu and Professor Mark Beaumont with the intention of combining their respective fields of research; Density Ratio Estimation (DRE), and Simulation Based Inference (SBI):

  • DRE is a rapidly growing paradigm in machine learning which (broadly) provides efficient methods of comparing densities without the need to compute each density individually. For a comprehensive yet accessible overview of DRE in Machine Learning see [1].
  • SBI is a group of methods which seek to solve Bayesian inference problems when the likelihood function is intractable. If you wish for a concise overview of the current work, as well as motivation then I recommend [2].

Last year we released a paper, Variational Likelihood-Free Gradient Descent [3] which combined these fields. This blog post seeks to condense, and make more accessible, the contents of the paper.

Motivation: Likelihood-Free Inference

Let’s begin by introducing likelihood-free inference. We wish to do inference on the posterior distribution of parameters \theta for a specific observation x=x_{\mathrm{obs}}, i.e. we wish to infer p(\theta|x_{\mathrm{obs}}) which can be decomposed via Bayes’ rule as

p(\theta|x_{\mathrm{obs}}) = \frac{p(x_{\mathrm{obs}}|\theta)p(\theta)}{\int p(x_{\mathrm{obs}}|\theta)p(\theta) \mathrm{d}\theta}.

The likelihood-free setting is that, additional to the usual intractability of the normalising constant in the denominator, the likelihood, p(x|\theta), is also intractable. In lieu of this, we require an implicit likelihood which describes the relation between data x and parameters \theta in the form of a forward model/simulator (hence simulation based inference!). (more…)

Compass Guest Lecture: Dr Kamélia Daudel, Postdoctoral researcher Department of Statistics, University of Oxford

New Opportunity: Funded PhD Project on Developing methods for model selection in causal health analyses

How can statistical modelling tell us what causes disease? Electronic Health Records (EHR) have transformed medical research, with diverse examples including examining risks of emergency admissions on weekends vs weekdays, and health and psychological outcomes after COVID-19. The strengths of analyses based on EHR data include the very large number of individuals available for analysis and the extremely detailed data available for each individual.

(more…)

Video: The Data Science behind COVID Modelling

We are excited to share Dr Daniel Lawson’s (Compass CDT Co-Director) latest video where he will tell you about the Data Science behind Bristol’s COVID Modelling.

Mathematics has had a hidden role in predicting how we can best fight COVID-19. How is mathematics used with data science and machine learning? Why is modelling epidemics such a hard problem? How can we do it better next time? What will data science be able to do in the future, and how do you become a part of it?

Skip to toolbar